Tag Archive | "energy policy"

smart grid survey

Smart Grid: How the International Community Is Combatting Climate Change (Part 3 of 3)

This is the final blog post in a series of three blog posts proposing that the Smart Grid is a possible contributing remedy to fighting global climate change.  This post addresses potential obstacles and developments of the Smart Grid within the United States, the European Union, and China and touches on international collaborations amongst those three countries.  The first blog in this series provided context about global climate change in general and detailed what the Smart Grid is.  The second blog in this series analyzed the Smart Grid on a more country-specific level and discussed how the United States, the European Union, and China define and value the Smart Grid. 

 

Part III: International Obstacles and Developments

Smart Grids are gaining global traction.[1]   This provides room for collaboration and capitalization on country strengths.[2]  U.S. Deputy Energy Secretary Daniel B. Poneman has stated that top greenhouse gas emitters like the United States (“U.S.”) and China have a common duty to remedy climate change and secure alternative energy sources.[3]

Generally, national legal frameworks like the Energy Independence and Security Act of 2007, federal stimulus money, and utility-driven initiatives “to add value and increase system efficiencies” have supported U.S. Smart Grid developments whereas Smart Grid deployment in the European Union (“E.U.”) significantly depends upon “policy mandates to meet environmental and climate goals” and China’s Smart Grid development has hinged upon significant state funding from the State Grid Corporation of China.  Nonetheless, Smart Grids are progressing despite being a part of the notoriously slow-changing electrical industry.

8 i's of intelligent grids

The 8 ‘I’s’ for Intelligent Grids (VAASA ETT)

These three countries have strengths that have the potential to benefit the global development and adoption of Smart Grids.  For an audio account of U.S. strides in the Smart Grid from the 2013 U.S. Smart Grid Year in Review webinar held on December 5, 2013, click here.  China’s smart meters are anticipated to be half the price of those in the U.S. and E.U.  This price difference is largely “attributable to cheaper labor and installation costs, shorter meter life span, no import taxes and lower transportation costs, and use of power line communications, which require few changes to existing transmission infrastructure.”  The E.U.’s deregulated market suggests more grid automation than in the U.S., which may promote more rapid smart meter deployment.

The U.S., the E.U., and China also face similar obstacles with respect to Smart Grids, which make collaboration with each other, and the greater international community, beneficial to further domestic and global climate change progress.  Because most of the Smart Grid’s key components already exist, “better communication, coordination, and incentives for consumers, power suppliers, and government agencies” are more important than expending resources to make the technologies more advanced.  Problems include increased electricity bills, implementation cost recovery, and job loss and shortages.

Specifically, consumer expectations and education regarding energy present a universal obstacle in consumer acceptance of the Smart Grid.[4]  U.S. consumers have evolved to meld the concept of luxury with “profligate waste.”[5]  Similarly, China, as a developing country, may be more concerned with economic growth, and the increased consumerism and pollution that result from urbanization, than being environmentally sound.  As a developing country, the focus tends to be on economic growth at the expense of environmental degradation.  However, some scholars hypothesize that once that country becomes more industrialized, the environment will become more valuable and protected.[6]

Generally, science has demonstrated that humans have an innate tendency to over-consume, rather than conserve, to attract mates and reproduce.[7]  Perception shifts of energy from a public good to a valuable resource[8] are essential to energy efficiency being a viable solution to global climate change.  Daniel Yergin advocates that conservation and energy efficiency should “become ‘part of our DNA.’”  He described that Japan is a global energy efficiency leader because of its “deep-seated cultural value of ‘mottainai’, which translates as ‘too precious to waste.’”  As a solution, the U.S., the E.U., and China have been addressing consumer education with respect to the Smart Grid, but some criticize the E.U. and U.S. as inadequately reaching out to consumers.

smart grid survey

Over the course of 2013, consumer attitudes regarding the Smart Grid in the U.S. have increased

This year, it is estimated that smart meters in the United Kingdom have motivated a significant number of consumers to become more energy efficient.  Also, as of December 2013 in the U.S., consumer awareness of the Smart Grid has increased despite the low energy prices and stability of the grid.  Regrettably, these two factors generally decrease consumer motivation to adopt energy efficient measures.

Privacy of Smart Grid-generated data is also problematic because Smart Grid technologies are capable of giving utilities and third parties access to more detailed energy data.  For example, in Kyllo v. United States, in order to substantiate a search warrant, police used a thermal imaging device from outside of the defendant’s home to detect amounts of heat emitted from inside the home, which were consistent with lamps typically used for growing marijuana.[9]  In a 2014 Smart Grid Cybersecurity Survey of energy executives, a majority considered the Smart Grid unprepared for security-related problems.  “The challenge is upon the entire smart grid ecosystem, from suppliers to [original equipment manufacturers] to utility companies to regulators and even to consumers, to embrace a concerted security direction and efficiently protect these advancements,” said Scott Emley, SMART Modular Technologies VP & GM, Integrated Memory Solutions.

E.U. privacy laws are comprehensive because one regime applies to different industries whereas, in the U.S., various sectors enforce unique standards.  China is considered devoid of streamlined energy decision-making.[10]  In the U.S., Naperville Smart Meter Awareness v. City of Naperville is a recent district court decision where plaintiffs unsuccessfully alleged that the city violated their right to be free from unreasonable searches pursuant to the Fourth Amendment when installing smart meters onto their homes.[11]

In light of these common obstacles regarding the Smart Grid, the U.S. and China have made significant collaborative efforts to promote Smart Grid developments.  Under the China-U.S. Ten Year Framework for Energy and Environment, they began Smart Grid-related projects.  In 2012, the United States Trade and Development Agency sponsored a meeting between China’s National Energy Administration and the U.S. Federal Energy Regulatory Commission to exchange “standards and policy, distribution, generation, state-of-the-art applications, communications, and control and management systems.”  In 2013, China and the U.S. entered agreements to exchange Smart Grid research[12] and inspire other countries to similarly confront climate change.[13]

Smart Grid proliferation varies depending upon a country’s existing grid, economy, and regulatory system, but the U.S., the E.U., and China will benefit from exchanging best practices, expertise, and technological insights to further promulgate Smart Grids.  According to Bloomberg New Energy Finance, “the fundamental drivers of the smart grid – greater grid reliability, further integration of renewable energy, and improved demand-side management – are stronger than ever.”  Without global collaboration, however, the efforts of each country on a domestic and international level will be “sapped.”

The Intergovernmental Panel on Climate Change confirms that the climate is warming at deleterious rates largely because of human activity.  International agreements such as the Kyoto Protocol have stressed that all countries have a common responsibility to mitigate climate change, but in ways based on their unique economic and social situations.  Smart Grid development and deployment contributes to that common responsibility because the Smart Grid enables cleaner, less fossil fuel-based energy sources to be integrated into the electrical grid and increases energy efficiency and conservation, which all decrease the amount of greenhouse gases emitted into the atmosphere.  Therefore, collaborative Smart Grid efforts have strong potential of making a positive impact on assuaging the criticalness of global climate change.

 

Jaclyn Cook is a 3L and a staff editor for the Denver Journal of International Law & Policy.



[2] Lynn Garner, China State Grid Corp. President Calls Smart Grid Crucial for Continued Growth, BNA, Jan. 19, 2011, http://climate.bna.com/climate/summary_news.aspx?ID=153000.

[3] Id.

[4] Michal Meidan, Philip Andrews-Speed & Ma Xin, Shaping China’s Energy Policy: Actors and Processes, Journal of Contemporary China 615 18(61) (2009).

[5] Avi Brisman, It Takes Green to Be Green: Environmental Elitism, “Ritual Displays,” and Conspicuous Non-Consumption, 85 N.D. L. Rev. 329, 355 (2009).

[6] Id.

[7] Richard J. Lazarus, Super Wicked Problems and Climate Change: Restraining the Present to Liberate the Future, 94 Cornell L. Rev. 1153, 1175 (2009).

[8] Meidan, supra note 4.

[9] Kyllo v. United States, 533 U.S. 27, 34 (2001).

[10] Joel B. Eisen, China’s Renewable Energy Law: A Platform for Green Leadership?, 35 Wm. & Mary L. & Pol’y Rev. 1, 6 (2010).

[11] Naperville Smart Meter Awareness v. City of Naperville, 11 C 9299, 2013 WL 1196580 (N.D. Ill. Mar. 22, 2013).

[12] Garner, supra note 2.

[13] Anthony Adragna, U.S.,China Announce New Working Group To Promote ‘Forceful’ Climate Change Action, BNA, Apr. 15, 2013, http://climate.bna.com/climate/summary_news.aspx?ID=235708.

Posted in 1TVFA Posts, 2Featured Articles, DJILP Staff, Jaclyn CookComments (0)

obama

The Smart Grid: How the International Community is Combating Climate Change (Part 2 of 3)

This is the second blog post in a series of three blog posts proposing that the Smart Grid is a possible contributing remedy to fighting global climate change.  This post analyzes the Smart Grid on a more country-specific level and discusses how the United States, the European Union, and China define and value the Smart Grid.  The first blog in this series provided context about global climate change in general and detailed what the Smart Grid is.  The final blog in this series will address potential obstacles and developments of the Smart Grid within the United States, the European Union, and China and will touch on international collaborations amongst those three countries.

 

Part II: What “Smart Grid” Means in the United States, the European Union, and China

 No global definition of Smart Grids exists,[1] but the basic concept is universal. One scholar has defined Smart Grids as “electricity system[s] that [use] information technology (IT) to connect those who generate and transmit electricity with those who consume it.”  The United States (“U.S.”), the European Union (“E.U.”), and China share similar developmental rationales, which include increasing energy capacity, reliability, efficiency, affordability, security, and global competitiveness; decreasing energy-related environmental impacts; and integrating renewable energy into the grid.[2]  With those considerations in mind, the U.S. and the E.U. most similarly define the Smart Grid, and China has a slightly different perspective.

United States

Currently, the U.S. electrical grid is centrally planned and fossil fuels predominantly feed it.[3]  The utility controls the process in a centralized manner when providing electricity to consumers.  One way the grid becomes “smart” is when appliances and electricity meters on homes and businesses become digital allowing for two-way interactive communication between utilities and consumers.  Therefore, electricity generation becomes distributed from multiple energy sources, which is more efficient.  Additionally, the Smart Grid includes “a broad array of electric system capabilities and services [that are] enabled through pervasive communications and information technology, with the objective to improve reliability, operating efficiency, resiliency to threats, and our impact to the environment.”

European Union

smart meter

A household uses a smart meter to view their energy consumption (Hugh Nutt/Alamy)

The E.U. also has a centrally planned grid where fossil fuels dominate.[4] The E.U.’s Smart Grids Task Force (“SGTF”) defines the Smart Grid as “an electricity network that can cost efficiently integrate the behaviour and actions of all users connected to it – generators, consumers and those that do both – in order to ensure [an] economically efficient, sustainable power system with low losses and high levels of quality and security of supply and safety.”  It also focuses on the dynamic communication between consumers and utilities through “intelligent metering and monitoring systems.”  Smart Grids in the U.S. and E.U. rely upon smart meters to achieve energy efficiency.

China

Similar to the U.S. and E.U., China’s Smart Grid refers to “an intelligent system capable of seamlessly integrating” alternative, renewable energy sources, such as wind and solar, into the electricity grid.  The State Grid Corporation of China (“SGCC”) describes Smart Grids as delivering more reliable and powerful electrical transmission and distribution to the whole countryChina’s National Climate Change Programme defined its “intelligent system” as “DC transmission technology and super high voltage transmission technology and equipment, grid transmission and distribution technology for intermittent power sources[,] . . . large-scale interconnected grid security technology[,] . . . grid management automation technology, [an] information technology and efficient management of supply and distribution system[,]” and phasing out technology that is inconsistent with new and enhanced energy efficiency standards.

smartgridinvestment

Motivations for Adopting the Smart Grid

As top emitters and energy consumers, the U.S., the E.U., and China have strong motivations for adopting the Smart Grid and have already implemented some of its components, like the smart meters.

United States

 The current grid’s primary function is to ensure lights stay on, but modern concerns include reliability, efficiency, affordability, and the environment.  The U.S. is the world’s largest energy consumer, and in 2009, energy from fossil fuels totaled more than 50% of energy consumption while renewables made up about 9%.  Also, the U.S. represents about 4% of the global population, but emits nearly a quarter of its greenhouse gases.  Based on 2014 data, the U.S. population hovered over 318,000,000, and its 2011 electricity consumption per capita was 13,246 kWh compared to 3,298 kWh in China and 5,516 kWh in the United Kingdom.

Thus, President Barack Obama suggested clean energy would compose 80% of the U.S. energy mix by 2035.  He proposed increasing clean energy production twofold by 2020 while encouraging energy efficiency[6] and confronting climate change.  The U.S. strives to use Smart Grids “to reduce energy demand by 20 percent, improve system efficiency by 40 percent, and incorporate 20 percent of renewables for electricity capacity by 2030.”

obama

Clean energy is slowly gaining ground in the U.S.

Smart Grids began in the U.S. around 2001.  Congress enacted the Energy Independence and Security Act of 2007 (“EISA”), which declared the U.S.’s modernization of its electrical transmission and distribution, to address these new concerns in the form of the Smart Grid.  EISA established the Smart Grid Task Force “to insure awareness, coordination and integration of the diverse activities” of Smart Grid practices, policies, and technological components.  EISA also directed each state’s electric utilities and other related entities to consider investing in and implementing the Smart Grid.  Thus, states could require utilities to implement aspects of the Smart Grid.  For instance, some utilities must replace obsolete residential meters with smarter, digital ones.  EISA directed the National Institute of Standards and Technology (“NIST”) to organize the Smart Grid’s interoperability framework to ensure consistency of all related entities and technologies.

In 2005, there were about 150 million traditional energy meters in the U.S., but less than two million were “smart.”  In 2009, President Obama injected $3.4 billion into the Smart Grid Investment Grant awards for system investments, trial implementations, and capacity building.  Private industries matched this funding making for a total of $7.8 billion.  Estimates now suggest that by 2015, 50 million more smart meters will be implemented.  A few states, like California7 and Maryland, have already widely implemented smart meters.  Many cities have Smart Grid projects.

 

European Union

In 2006, the European Community (“the Community”) recognized a need for energy efficiency and renewable energy to assuage energy usage, greenhouse gas emissions, and climate change effects, and to help wean the Community from reliance on foreign energy sources.  Nuclear and coal dominated the electricity energy mix.[7]  Therefore, the Community enacted the energy end-use efficiency directive to achieve those needs.  The directive stated that human activity in the energy sector had caused around 78% of greenhouse gas emissions in the Community, and therefore, Member States were required to “adopt national indicative targets to promote energy end-use efficiency.”  Additionally, the directive required each Member State to complete an action plan outlining strategies for satisfying the directive.

In 2009, the European Commission first mentioned smart meters in a mandate for establishing E.U. standards “that [would] enable interoperability of utility meters (water, gas, electricity, heat), which [could] then improve the means by which customers’ awareness of actual consumption [could] be raised in order to allow timely adaptation to their demands.”  In the Third Energy Package, the Community specifically addressed Smart Grids in efforts to modernize its electrical distribution system by decentralizing generation and increasing energy efficiency.  This directive described that implementing smart meters to 80% of the E.U. by 2020 was the most pivotal stride for Smart Grids.

The European Commission tasked the SGTF with advising it on policy and regulations to implement Smart Grids at the community level.  The SGTF organized expert groups that considered creating and revising standards, creating proposals for smart meter data privacy, and defining regulatory recommendations for business models that encourage grid deployment.

In 2011, the European Commission mandated E.U. standardization organizations to improve upon and create Smart Grid standards by 2012’s end.  This mandate recognized that Smart Grids are essential to the Community achieving its 20/20/20 targets.  The targets are: (1) reducing greenhouse gas emissions in the E.U. to a minimum of 20% under 1990 levels, (2) reducing “primary energy use compared with projected levels” by 20% using energy efficiency measures, and (3) “guaranteeing high security, quality and economic efficiency of electricity supply in an open market environment.”

The Energy Roadmap 2050 reiterated these goals in light of a “sustainable and secure energy system.”  A smarter grid promotes energy efficiency and integrates renewables, which are more intermittent in generation than fossil fuels.  It also makes the E.U.’s goal of reducing emissions to 80-95% of 1990 levels by 2050 more attainable.

 

China

China is the world’s second largest energy consumer and strives to be a global contender in all respects, which includes being the alternative energy leader.[8]  With the world’s largest population at 1,317,000,000, China’s electricity consumption per capita in 2011 was 3,298 kWh.  One of the government’s goals is lowering “energy consumption per unit of GDP by 15 percent” by 2015.  Also, the Renewable Energy Law of 2005 stated a goal of a 10% renewables mix by 2020.[9]  Because China derives most of its power from coal and its electricity meters are “relatively low” quality, China is motivated to transition into cleaner energy.  Complicating the shift is that Chinese citizens are rapidly migrating from the country to cities, which increases energy demand threefold.

In 2007, the Chinese government pledged to “make great efforts to develop new and renewable energy technologies and new technologies of energy conservation” in China’s National Climate Change Programme (“CNCCP”).  The CNCCP envisioned elements of the Smart Grid.  Also, China’s 2007 Energy Conditions and Policies report enunciated some grid-related goals that have Smart Grid implications: modernizing the grid, increasing energy efficiency and energy conservation, strengthening power transmission and distribution, creating “emergency response system[s] for power safety and reliability,” enforcing the Renewable Energy Law, and enhancing rural grids.

In its Twelfth Five-Year Plan, the government committed itself to developing “intelligent power grids” and performing system trials.  The SGCC established a strategy for creating and implementing Smart Grids by 2020:

  • 2009-2010 – The planning and testing phase included creating a development plan, “technical and operational standards,” technology, and trial implementations.
  • 2011-2015 – Smart Grid framework for actual operation will be created and, after technological improvements occur, the Smart Grid will be deployed countrywide.
  • 2016-2020 – The Smart Grid will be upgraded and completed “with [the] most advanced technology and equipment.”  By 2016, China is expected to have implemented 280 million smart meters.

In 2009, SGCC, the “largest State-owned utility” company worldwide, declared its intention to construct a grid that is strong and smart by 2020.  China has at least 15 city demonstration projects.  In 2010, a Chinese power company implemented various Smart Grid technologies into one smart community that included 655 homes and 11 commercial buildings.

The highly centralized structure of China’s government allows for faster policy development and implementation.  Smart Grids have enabled local governments to exercise more power over their respective regions by investing in local Smart Grid projects.  As a byproduct of China accomplishing its goal of providing strong energy countrywide, its electrical distribution and transmission system must necessarily become efficient in order to sustain that increased energy demand.

As of 2014, investments in Smart Grid technologies globally totaled $14.9 billion.  China leads the pack having spent $4.3 billion in 2013 compared to the U.S. at $3.6 billion.  Estimates state that currently China has over two times as many installed smart meters as the number of U.S. households.  Also, “Asian and European markets will drive growth through 2020, while in North America the focus will continue to shift from hardware to software as utilities look to squeeze additional value out of the vast amounts of grid data now available.”

The U.S., China, and the E.U. have acknowledged their present and future energy needs and are taking measures to ensure that their people have electricity.  However, their adoption of environmental policies and Smart Grid initiatives demonstrate that they are also taking the environment into account.  As energy efficiency technologies like the Smart Grid continue developing, the larger benefits remain to be seen through collaborative technology transfer between countries.

 

Jaclyn Cook is a 3L and a staff editor for the Denver Journal of International Law & Policy.



[1] Mariusz Swora, Intelligent Grid: Unfinished Regulation in the Third EU Energy Package, 28 J. Energy & Nat. Resources L. 465, 466 (2010).

[2] Litos Strategic Commc’n, The Smart Grid: An Introduction 7-8 (2008), available at http://energy.gov/sites/prod/files/oeprod/DocumentsandMedia/DOE_SG_Book_Single_Pages(1).pdf; EU Comm’n Task Force for Smart Grids, Expert Group 1: Functionalities of Smart Grids and Smart Meters 22 (Dec. 2010), available at http://ec.europa.eu/energy/gas_electricity/smartgrids/doc/expert_group1.pdf.

[3] Miranda A. Schreurs, Henrik Selin & Stacy D. VanDeveer eds., Transatlantic Environment and Energy Politics: Comparative and International Perspectives 151 (2009).

[4] Swora, supra note 1.

[5] See Jaclyn Cook, The Smart Grid: How the International Community is Combating Climate Change (Part 1 of 3), The View from Above (Feb. 25, 2014), URL to Part I (describing smart meters).

[6] Richard Cowden, Obama, Congress Could Work Together on Pragmatic Energy Efficiency Programs, BNA, Feb. 15, 2013, http://www.climate.bna.com/climate/summary_news.aspx?ID=231636.

7 Pacific Gas & Electric, Getting Your SmartMeter Device, http://www.pge.com/en/myhome/customerservice/smartmeter/installation/index.page (last visited Jan. 31, 2014) (installed around 9.5 million smart meters); San Diego Gas & Electric, Smart Meter Deployment Metrics, Q1 2013 January 1, 2013 – March 31, 2013, http://www.sdge.com/residential/about-smart-meters/smart-meter-deployment-metrics-0 (last visited Jan. 31, 2014) (installed about 2.2 million smart meters).

[7] Schreurs, supra note 3, at 148.

[8] Joel B. Eisen, China’s Renewable Energy Law: A Platform for Green Leadership?, 35 Wm. & Mary L. & Pol’y Rev. 1, 1 (2010).

[9] John Copeland Nagle, How Much Should China Pollute?, 12 Vt. J. Envtl. L. 591, 613 (2011).

Posted in 1TVFA Posts, 2Featured Articles, Jaclyn CookComments (0)

smart meter diagram

The Smart Grid: How the International Community Is Combating Climate Change (Part 1 of 3)

This is the first blog post in a series of three blog posts proposing that the Smart Grid is a possible contributing remedy to fighting global climate change.  This post provides context about global climate change in general and details what the Smart Grid is.  The second blog post discusses the Smart Grid on a more country-specific level and analyzes how the United States, the European Union, and China define and value the Smart Grid.  The final blog post will address potential obstacles and developments of the Smart Grid within the United States, the European Union, and China and will touch on international collaborations amongst those three countries.

 

Part I: Climate Change and Smart Grid

“Tomorrow’s power systems are expected to cover an increasing demand for electricity in an affordable, sustainable and reliable way. New elements like highly distributed generation or a much closer interaction between consumers and generators will contribute, but require innovative solutions across traditional industry borders.” – Jochen Kreusel, Head of ABB’s Smart Grids Industry Sector Initiative

The international community is undoubtedly in consensus that climate change is occurring and the earth is warming largely due to human actions.  In fact, since the United Nations Framework Convention on Climate Change in 1992 most nations recognize the need to collaborate on how to stabilize global greenhouse gas emissions.  Many countries, including the United States (“U.S.”), the European Union (“E.U.”), and China, have agreed that all countries have “common but differentiated responsibilities” in remedying climate change that differ based on their economic and social environments and historic and present generation of emissions.  Top emitting countries, like the U.S., the E.U., and China are adopting strategies, like the Smart Grid, to become more energy efficient and reduce energy consumption.[1]

power plant in china

Wujing Thermal Power Plant, Shanghai — China has earmarked $45 billion for Smart Grid technologies (AP/Eugene Hoshiko)

The Smart Grid’s dynamic nature allows for intermittent alternative energy sources to be more easily integrated into the traditional, existing electricity grids.  As countries consider shifting away from fossil fuel-based energy to renewable energy sources, Smart Grids use digital, interactive technology that allows integration of renewable energy into the grid to be used as power.  Because renewable energy is “virtually [a] free” energy source, renewables are considered a threat to the traditional grid, which is regarded as rigid and unreliable in an era where electricity demand is only increasing.[2]  By using less energy, consuming energy more efficiently, and integrating more renewable, lower emission energy sources into the grid, the Smart Grid is a promising component in the international community’s fight against climate change.

 

What is the “Smart Grid”?

No universal definition of “smart grid” exists, but the general concept is widely accepted.[3]  One U.S. energy company, Xcel Energy, has an illuminating definition.  To Xcel, the Smart Grid is “an intelligent, auto-balancing, self-monitoring power grid that accepts any source of fuel (coal, sun, wind) and transforms it into a consumer’s end use (heat, light, warm water) with minimal human intervention.”[4]

Using the U.S. as an example, the dominant electric grid, which was developed in the 1890s, is centralized and an electricity provider controls it.  The provider, through its system operators, must match generation of electricity with demand on an almost minute-by-minute basis.  It is a one-way, utility-to-consumer process.

By contrast, the grid becomes “smart” as a result of “the digital technology that allows for two-way communication between the utility and its customers, and the sensing along the transmission lines.”  Smart Grids are premised on integrating renewable energy sources into the grid and increasing energy efficiency, which means less energy will be used and the energy that is used will come from clean, fossil-fuel free sources.  Therefore, Smart Grids have a positive effect on climate change because they reduce emissions that contribute to global warming.

Powered by “today’s twin challenges” of reducing greenhouse gas emissions in an electricity hungry world,[5] Smart Grid development is largely based on the need to integrate renewable sources of energy into the grid and mitigate effects that emissions have on climate change.[6]  The Smart Grid attacks the challenges by also promoting energy efficiency, which has been called “the fifth fuel.”  It attempts to provide energy that is more reliable and more efficient.

smart meter diagram

This diagram from Siemens illustrates how renewable energy may be integrated into a household

For example, electricity companies would be better able to detect power outages and prevent wide-scale blackouts because the Smart Grid’s electric system is digital and can communicate with the digital meter on one’s home.  In short, the company response time to such situations would be faster.  We live in an age where electrical grid failures, and resulting blackouts, are alarmingly common and more and more consumers continue burdening the grid with their voracious appetite for electronics.  So, the Smart Grid’s responsiveness to consumer needs makes energy more reliable.

A Critical Component: the “Smart Meter”

The Smart Meter is one of the key devices that allows the Smart Grid to increase the two-way communication between a utility company and the consumer that is characteristic of the Smart Grid.  In contrast to analog meters that attach to the outside of most U.S. homes, “smart” meters are digital.  Therefore, they allow for the grid to be responsive to fluctuating energy prices and supply and demand as those changes occur in real time.  This is significant because they have the potential to decrease “the high cost of meeting peak demand” and render peak power plants unnecessary.  Removing these power plants, which typically use fossil fuels, undoubtedly helps mitigate climate change.

Using an energy management system, home residents may view their smart meter data and electrical consumption information on personal computers or cellular phones.  The system enables residents to automate their energy usage according to “real-time information and price signals from [their] utility” so they only run their high-efficiency dishwashers or washing machines, for example, during times prices are low.  These types of household appliances (e.g., refrigerators, hair dryers, computers, washing machines) represent about 60-90% of energy consumption in the residential sector so this dynamic communication is essential to delivering cost-effective, reliable, and energy-efficient electricity to consumers.[7]  In the U.S., the number of consumers checking their energy usage on mobile devices has increased and these devices are crucial in engaging consumers as the Smart Grid gains more traction in 2014.

smartgrid

Currently, U.S. technology is capable of measuring the power in kilowatt-hours of specific devices within homes.  So, in gathering home energy data, smart meters may be capable of exposing one’s personal details.  The meter may reveal data, called consumer-specific energy-usage data, about when the occupant is not home, whether one has a home alarm system, or whether one is toasting bread in the morning.  More detailed consumer usage data benefits the Smart Grid because if electric companies know exactly how much energy specific appliances need, then they are better able to meet a household’s electrical demand.  This data also allows consumers to program their appliances to turn on when energy is the cheapest.

Presently, however, the “state of the art, in terms of the granularity of data collected by utilities using advanced metering, cannot yet identify individual appliances and devices in the home in detail, but this will certainly be within the capabilities of subsequent generations of Smart Grid technologies.”  Nonetheless, as the smart meter develops to reach its full potential for consumers and utilities, it will necessarily have to detect specific appliances being used at specific times of day for specific amounts of time.[8]  The Smart Grid’s success depends upon this real-time consumer electricity data.

The Smart Grid is the 21st Century’s electricity grid.  Our society is increasingly more interactive, dynamic, and digital in nature so an electrical grid that also possesses these characteristics is only fitting.  The global population is increasing, and the U.S, the E.U., and China make it clear that countries are taking action to ensure their present and future generations have access to clean, efficient, and reliable electricity.

 

Jaclyn Cook is a 3L and a staff editor for the Denver Journal of International Law & Policy.

 


[1] See e.g., Energy Independence and Security Act of 2007, H.R. 6, 110th Cong. 110-140 (2007), http://www.gpo.gov/fdsys/pkg/PLAW-110publ140/pdf/PLAW-110publ140.pdf; Directive 2006/32/EC of the European Parliament and of the Council of 5 April 2006 on Energy End-Use Efficiency and Energy Services and Repealing Council Directive 93/76/EEC, OJ 2006 L 114/64, available at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:114:0064:0064:en:pdf; China’s Twelfth Five Year Plan, http://cbi.typepad.com/china_direct/2011/05/chinas-twelfth-five-new-plan-the-full-english-version.html.

[2] Greenpeace Says Smart Grid Could Help E.U. Meet Most Needs From Renewables by 2050, BNA, Jan. 19, 2011, http://climate.bna.com/climate/summary_news.aspx?ID=153003&hhterm=U3RlcGhlbiBHYXJkbmVy&hhtype=QWxsV29yZHM%3D.

[3] Mariusz Swora, Intelligent Grid: Unfinished Regulation in the Third E.U. Energy Package, 28 J. Energy & Nat. Resources L. 465, 466 (2010).

[4] Xcel Energy, Xcel Energy Smart Grid: A White Paper 2 (2008), available at http://www.e-renewables.com/documents/Smart%20Grid/Xcel%20Energy%20Smart%20Grid.pdf.

[5] Edward H. Comer, Transforming the Role of Energy Efficiency, 23 Nat. Resources & Env’t 34, 34, (2008).

[6] Xcel Energy, supra note 4.

[7] Cheryl Dancey Balough, Privacy Implications of Smart Meters, 86 Chi.-Kent L. Rev. 161, 166 (2011).

[8] Nat’l Inst. of Stds. & Tech., Guidelines for Smart Grid Cyber Security: Vol. 2, Privacy and the Smart Grid 12 (2010), available at http://csrc.nist.gov/publications/nistir/ir7628/nistir-7628_vol2.pdf.

Posted in 1TVFA Posts, 2Featured Articles, DJILP Staff, Jaclyn CookComments (0)

Hands Off My Patagonia: Chile Leverages its Most Precious Biogem as it Struggles to Satisfy a Growing Need for National Energy

The New Song of Chile – No to HidroAysén (Difamadores)

The future of Chile’s Patagonia continues to be a source of steep controversy as a large-scale dam project looms. HidroAysén is the name of the $3.2 billion hydroelectric dam project that appears to be slowly moving forward in the Aysén region of the South American country. If HidroAysén is executed according to current plans, it will be a complex of five dams on two rivers that would flood more than 12,500 acres of pristine Patagonia territory. The Chilean government’s approval of the project last year was promptly challenged by the project’s opponents in the Chilean courts. Recently, the nation’s Supreme Court rejected seven appeals filed objecting to HidroAysén. Since this ruling, the project has continued to advance.

Aside from the environmental impact, HidroAysén is particularly controversial in Chile because the country is having trouble securing enough energy supplies to keep up with its own economic growth. In order to fuel such growth, it is estimated that Chile will need to double its electricity capacity generation over the next 10 to 15 years. HidroAysén would contribute 2,750MW – or 20 percent of the country’s electricity demand – of energy to Chile’s energy system.

The HidroAysén project has been met with a great deal of opposition. Last summer, after the Chilean government announced its initial approval of the project, several massive protests filled the streets of Santiago and the country’s other major cities. The protests resulted in 28 police officer injuries and more than $100,000 in damage to public property. The project has also taken a toll on President Sebastián Piñera’s administration; his approval rating fell to 36 percent in May of 2011, after his administration announced the approval of HidroAysén.

Opponents say that Chile should instead focus its efforts on modernizing current energy sources and on implementing improvements that would make the current system more efficient. Environmental organizations, like Greenpeace Chile, further argue that HidroAysén’s benefits are too small to merit destruction to parts of Patagonia. Opponents are also skeptical of the government’s claims that one of HidroAysén’s primary purposes is to provide poorer Chileans with cheaper energy. Instead they contend HidroAysén is simply a means to provide cheap electricity to the mining industry, which is at the core of Chile’s economic prosperity.

Meanwhile, the Chilean government argues that, in order to meet the country’s growing energy demands, it needs to implement agressive energy alternatives than what is already in place. The government further explains that the project is part of Chile’s goal to reduce its 96 percent dependence on imported oil and give the country more energy independence. The Chilean government defends the need for HidroAysén and projects like it because, while alternative energy, like solar or wind, is more sustainable, such sources are not as reliable or stable as more traditional energy sources. Despite the level of opposition to the project from the public, President Piñera has expressed a great deal of support and praise for the project. Piñera has explained to the press that while he is concerned with protecting the environment, he is more concerned with the health and quality of life of his fellow Chileans.

Chile has been criticized because, compared to Brazil or Argentina, it is doing very little to incentivize renewable energy development and that in five to ten years, solar options that achieve the same goals will be cheaper than it will be to operate and maintain HydroAysén. Opponents say Piñera is showing signs of the kind of corporate-government economic free-market concentration that has defined past Chilean governments and they remain suspicious of the project’s true motives since an Italian-Spanish-Chilean consortium owns HidroAysén, and the majority stakeholder, Endesa Chile, owns most of the water rights to both rivers the dam would affect.

HidroAysén does not expect to have final approval until about 2013. The first dam could be operating by 2019, the last by 2025. After several months of debate, the controversy continues to be an issue of national concern. It is unclear whether the potential HidroAysén project in a place with some of the most dramatic landscapes in the world, when officially approved, will reflect a compromise between the Piñera administration and the Chilean people.

But for now, the biogem that is Patagonia remains safe.

Gaby Corica is a rising third year law student, a member of the Denver Journal of International Law and Policy, and a Senior Editor on The View From Above.

Posted in 1TVFA Posts, 2Featured Articles, DJILP Staff, Gaby CoricaComments (0)


University of Denver Sturm College of Law
Visit the DJILP Newsroom

Posts by Date

March 2017
M T W T F S S
« Feb    
 12345
6789101112
13141516171819
20212223242526
2728293031  
Resources